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Asymptotic expressions are obtained for the end zone of a propagating displacement jump. A formula is presented for the size 
of the end zone when there is linear weakening in it which, when used in Novozhilov's structural criterion, provides an answer 
to the question as to why the propagation velocity of normal or shear displacement jump, which is conventionally observed under 
mechanical loading in experiments and during earthquakes, is less than the Rayleigh wave velocity. © 2005 Elsevier Ltd. All 
rights reserved. 

In the conclusion to the monograph [1], the "limitation of the crack velocities observed in experiments" 
was designated as being among the unsolved problems and, earlier ([1], p. 264), it was mentioned that 
"... in the case of a bounded critical stress intensity factor, the crack propagation velocity must tend 
to the Rayleigh wave velocity. Actually, as experiments show, under conditions of mechanical loading 
the limit velocity of a crack turns out to be much lower than the Rayleigh wave velocity". Recent 
seismograph records, which were directly on the rupture surface accompanying the Chi-Chi earthquake 
on Taiwan (20 September 1999) [2], confirm this fact. 

The search for an answer to the question raised in [1] is still urgent since a transition through the 
Rayleigh wave is reproduced in the numerical simulation of rupture propagation (for example, see [3]). 
This transition was also obtained during a simulation of the Chi-Chi earthquake [4], which contradicts 
the above-mentioned data from direct observations. 

All of this prompts one to return once more to the problem formulated in [1]. The results presented 
below were obtained from an analysis of the mechanism of the Chi-Chi earthquake. They serve as an 
explanation for the fact that rupture velocity observed accompanying mechanical loading is lower than 
the Rayleigh wave velocity. It is assumed here that the rupture velocity does not exceed the velocity of 
transverse waves. 

Section i contains an extension of the asymptotic relations obtained previously for a static problem 
to a problem concerning a propagation displacement jump (a moving rupture). A comparison of the 
critical size of the weakening zone at the initial disruption with its size during the propagation of the 
rupture is presented in Section 2. It is established that the asymptotic formula is already applicable at 
distances comparable with the initial size of the zone of weakening. In Section 3, it is shown, on the 
basis of these conclusions, that it follows from the structure - time criterion [5-7] that the maximum 
rupture velocity is lower than the Rayleigh wave velocity. Branching, discontinuities, supersonic rupture 
propagation and other mechanisms for the absorption of excess energy, which may arise on account of 
the restricted size of the end zone, are not discussed here. 

Treatment of the ease when the rupture velocity, while being lower than the velocity of bulk waves, 
is found to be greater than the velocity of transverse waves, requires a more complex analysis. A brief 
remark about this case is made at the end of the paper. 

tPrikL Mat. Mekh. Vol. 69, No. 1, pp. 144-149, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd, All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.01.013 
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1. A S Y M P T O T I C  R E L A T I O N S  F O R  T H E  EN D  Z O N E  OF 
A P R O P A G A T I N G  D I S P L A C E M E N T  J U M P  

Suppose the front of the displacement jump at the instant being considered has a velocity v and has 
advanced by a sufficiently large distance l such that the field in the neighbourhood of the front can be 
considered as being a locally stationary field (in the next section, we shall estimate when this assumption 
is acceptable). We direct the x axis along the direction of motion of the rupture, the y axis along the 
f ront  and the z axis perpendicular to the plane of the rupture so that the x, y and z axes form a right- 
handed system (Fig. la).  For simplicity, we shall assume that the displacement vector behind the front 

+ - + - + 
has a discontinuity in only o n e o f  its components Aux = Ux - Ux, Auy  = U y - Uy or Auz = Uz - u~. The 

+ - + - + __ 
stresses at the rupture and ahead o f  it are continuous: or= = fr~x = ~=, o~y = G~y = <J~y, ~= - ~ = Ozz. 
We shall assume that they are equal to zero behind the front. The more general case of constant, non- 
zero stresses, as usual, is included as a superpositioning (see [8] for example). 

In the neighbourhood of the tip of the rupture, the elastic field is steady in the system of coordinates 
= x - vt, T1 = y, ~ = z which moves together with it (see Fig. lb). Therefore,  in order to obtain the 

asymptotic relations describing this field, we use Galin's steady-state solution [9] (see also [10, p. 120]) 
which we will represent in the form 

dAu, = c, S d;' 
at 

where 

i = x,Z, y (1.1) 

1 , 1 
Ci = - ~ f i ( P )  P = 7) 

2 2  
a 2pl3 

f x ( P )  = - 2 p ~ .  - 1 f z ( P )  = - 2 ~ " a J P  - 1 ' O~ l''i" ~ ' f Y ( P )  - ~p2~2 1 

= _ .2 4[]1 2 , e /  2 2_ _ A R (2p2132 1) - ~p  p p 12p2132 1 

Ix is the shear  modulus, a and I~ are the velocities of the bulk and transverse waves and the equality 
An = 0 defines the Rayleigh wave YR. In the case when Poisson's ration v = 0.25, we have oUI3 = ~]3, 

~n = 0.918413. 
There  is no displacement jump ahead of the wave front. Subject to this condition, the key asymptotic 

formula for the end zone [11-13] 

0 

- o  

follows from relations (1.1), where ki  is the stress intensity factor (SIF): of the shear transverse (i = x), 
the normal (i = z) or the shear longitudinal (i = y) stresses. We stress that the SIF is due to the external 
loads rather than to the stresses in the end zone. In order that the stresses should be finite (and continuous) 
in the rupture front, the condition 
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must be satisfied. 
In the case of a specified law for the interaction between the sides of the rupture in the end zone, 

Eqs (1.2) and (1.3) determine the stress distribution and the displacement jump distribution in it and 
the size a of this zone. In the case of the generally used model of linear weakening see [3, 4, 12-17] for 
example), the relation between zXui and o~/has the form shown in Fig. 2. Its analytical expression contains 
the limit stress ore, which is withstood by the material and the weakening modulus M which has the 
dimensions [stress/length]: 

{ (~m -- MAul, Aui  <- Aura 

(Yzi = O, AU i >- AUm 
(1.4) 

Substituting expression (1.4) into relations (1.2) and (1.3) normalizing 

(Y = I~zi/(Ym, ~ ' = - ~ / a ,  ~ ' = - ~ / a  

we obtain 

I 

O(~')-~,IL'(~', ; ')o(; ')d~' = 1-)~k/ ~ --~' 
Cm# a 0 

(1.5) 

where 

1 

o(¢)a¢ _- E 
~12a~m 

¢) = L(-{ ' , -¢) ,  

(1.6) 

)~ = CiMa (1.7) 

An analysis of Eqs (1.5) and (1.6) [12] shows that a solution having a physical meaning only exists 
for values of )~ which do not exceed the critical value )~c = 0.4655. When )~ = ~.c, the stress vanishes 
when ~ = -a and an increment in the free rupture surface corresponds to it. This means that progress 
of the rupture occurs when )~ = £c- Taking into account the second equality of (1.7), we obtain that 
the condition 

C i M a c  = )~c (1 .8)  

is satisfied during the propagation of the rupture, where ac is the critical size of the zone of weakening 
in the case of the front propagation velocity x). 

The relation [12] 

% ~ , 2 M  
~C:ikic-- 7 = 1 (1.9) 

(Ym 
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corresponds to the condition (1.8) being satisfied and, in the dynamic problem being considered here, 
the quantity kic has the meaning of the critical value of the dynamic SIE While this is not a constant 
of the material, it does depend on the rupture velocity. Only the critical value of the static SIF serves 
as a characteristic of the material. 

Actually, in the static case, on taking the limit v ~ 0 in the expressions for Ci, we have 

Cx0 = Cz0 = 2 (1 -v ) /Utg ) ,  Cy 0 = 2/(rtp.) 

where v Poisson's ratio. We will now take account of the fact that, in the static case, the influx of energy 
per unit area -dE/dS is equal to (1 - v)k~o/(2g), (1 - v)k20/(2g) and @0/(2g) for displacement jumps in 
the x-, z- and y-directions respectively (see [1, 10] for example). Condition (1.9), which strictly corresponds 
to the number of equation (1.5), takes the form of the Griffith-Orovan condition: -dE/dS = 2% where 
21 = O2m/(2M). In Fig. 2, the area under the weakening line corresponds to 23'. Hence, according to the 
Griffith-Orovan criterion, 23' is the maximum energy absorbed per unit area during the rupture of the 
material. The energy 23' and, consequently, the critical values of the static SIF, which are associated 
with it through the relations presented, serve as characteristics of the strength of the material. 

We now turn to the dynamic condition in the form of (1.8). To be specific, we will consider it in the 
case of shear rupture: AUx ~ 0 when ~ < 0. We will write equality (1.8) in a form which determines the 
dimensionless length acM/(2g) of the zone where there is weakening: 

zX. M _~a 
acg-J. = fxc(P); fxc(P) = " "  (1.10) 2"~C-2p~p2~2-1 

For a given Poisson's ratio v, the functionf,  c(p) depends solely on the normalized rupture velocity 
v/~. 

A graph of the dimensionless length acM/(2g) of the end zone where there is weakening, constructed 
for the usual value v = 0.25, is shown in Fig. 3. It can be seen that the size of the zone tends to zero 
in the case of a rupture velocity which tends to the Rayleigh wave velocity (vR/[3 = 0.9184). The end 
zone disappears in the limit when v = YR. Such a situation is unreal since, in order for the material to 
separate, it is necessary that a zone where this occurs should be preserved and, at least, a certain domain 
with a size of the order of the dimensions of the structural elements which area fractured. The 
corresponding constraint on the velocity of the rupture wave is discussed in Section 3. 

2. THE D O M A I N  OF A P P L I C A B I L I T Y  OF THE A S Y M P T O T I C  
F O R M U L A  F O R  THE END Z O N E  

We will now investigate how far a rupture must advance in order that the asymptotic formula for the 
size of the end zone can be confidently used. To do this, we use the initial rupture condition obtained 
in [18] from a consideration of a segment of length 2lo, on the whole surface of which the maximum 
stress Om is attained: the sides of this segment interact along its whole length in accordance with relation 
(1.4), which corresponds to linear weakening. Hence, in the case being considered, the "end" domains 
of weakening have a length aco = lo and they extend to the middle of the segment where they join. The 
critical value aco, obtained by a numerical solution of the problem, is determined by the condition 
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X-2+-glMaco = 1.158 

where Z is the Muskhelishvili parameter. In the case of plane deformation, )~ = 3 - 4v, and this relation 
can be written in the form, which is analogous to (1.10) 

M 1.158 
(2.1) "~ ac° - 4(1 - v) 

For v = 0.25, which has been used to construct the graph in Fig. 3, the right-hand side equality (2.1) 
is equal to 0.386. The analogous static value for the right-hand side of the asymptotic formula (1.10) 
is equal to ac(O)M/(2g) = 0.485. It follows from this that the asymptotic formula (1.10) is already 
applicable when there is a moderate distance l between the end of the rupture and the middle of the 
rupture (l _> 10) and, even when l = l0 = aco, the error is only 25.6%. 

3. V E L O C I T Y  C O N S T R A I N T  F O L L O W I N G  F R O M  
THE S T R U C T U R A L  C R I T E R I O N  

According to Novozhilov's structural criterion [5], a crack develops when the stress in an element, with 
a specified characteristic size, in the neighbourhood of the crack tip attains a limit value. The characteristic 
size is of the order of the size of the structural element which is being fractured. This size is clearly 
different for different structural levels. Nevertheless, it remains of the same order of magnitude in the 
case of observed macroscopic ruptures. This shows up particularly clearly in the case of a generalized 
structural criterion for dynamic problems in the form of a structural - time criterion [6, 7]. It has been 
shown that even the use of a constant value of the characteristic size, when appropriate account is taken 
of the duration of the loading pulse, enables one to describe crack propagation in a wide range of dynamic 
experiments. It is therefore justified to impose this physically obvious constraint on the size of the end 
zone. We note that this constraint was not imposed in the case considered in [3, 4], when the calculations 
gave a transition through the Rayleigh velocity. 

In accordance with what has been said, we shall assume that, although the size of the end zone may 
be reduced in dynamic calculations, it cannot be reduced to zero: it remains of the order of the 
characteristic size of the structural elements which are being fractured. In the case of the normalized 
critical sizes shown in Fig. 3, the boundary corresponding to a quarter of the static size is shown by the 
dashed line. For this line, the maximum velocity is equal to 0.965~)R. 

It follows from the graph in Fig. 3 that a constraint on the size of the end zone leads to a constraint 
on the rupture velocity which prevents it from reaching the Rayleigh wave velocity. Consideration of 
the time ac/v for which the pulse acts, as in customary when the structure - time criterion [6, 7] is used, 
imposes an additional restriction on the velocity of the rupture wave. Hence, the maximum permissible 
size of the end zone controls the maximum possible rupture velocity. This situation, in conjunction with 
formula (1.10) and the graph in Fig. 3, constitutes the main result of this paper. 

In conclusion, we recall that the results which have been presented were obtained on the assumption 
that the rupture velocity is lower than the velocity of transverse waves (v < ~). It is impossible to 
reproduce the investigation of the opposite case ([~ < v < ~), carried out by the author, within the 
framework of this brief communication. We merely note that, in the case of a transverse displacement 
jump Aux, an i__nitial relation of the type of (1.1) can also be used when ]] < a~ < c~. In this case, for a 
velocity v = ~/2 [3, which corresponds to when there is no exponential growth in the displacement jumps, 
the dimensionless length acM/(2g ) of the zone of weakening is 0.422, which is only slightly less than 
the above mentioned static value ac(O)M/(2g) = 0.485. It is clear that, in the case when the zone of 
weakening has a finite size, a transition from a rupture velocity which is less than the velocity of the 
transverse waves (a) < ~) to a velocity which exceeds that of the transverse waves ([~ < v < ~) can only 
be accomplished by abruptly. 
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